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ABSTRACT

This report deals with the development of two different
analyses for the vibration responses in supercritical shafts: one
especially suited for the determination of support impedances (mass,
spring, damping coefficients) for minimum vibration response in the
criticals; the other for direct vibration response in terms of
statically measured shaft defects. The traveling wave concept is
extensively discussed. Presented is a preliminary parameter study
of the simply supported rotating shaft with one flexible intermediate
support subjected to a half sine wave defects distribution. The
effects of end masses are studied also, Several conceptual designs
of multiring damping assemblies which can accommodate the damping
requirements of hypercritical shafts are included in the report.
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PREFACE

The following constitiutes the final technical report concerned
with research accomplished under a grant awarded by the U. S. Army
Aviation Materiel Laboratories (formerly U. S. Army Transportation
Research Command), Fort Eustis, Virginia, under grant no.
DA-AMC-44-177-63-G10 to the Research Laboratories for the
Engineering Sciences, University of Virginia, Chariottesville,
Virginia. The contract was monitored by Mr. D. Kane; the principal
investigators were Dr. R. T. Eppink and J. A. Friedericy. The pro-
gram was initiated 1 July 1963 and terminated 15 September 1964,
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SYMBOLS

a =  subscript indicating left-end support of
shaft
a, = distance from origin to jth driving
J force
A = area of shaft cross section

. . ' = arbitrary integration constants to the
Ak’ Akz Ak’ Ak‘ solution of the equation of motion in

the (4, _,, £, )span of the shaft

A = Xz;ctor representation of Akl’ Akz' A'ks'
4

b =  subscript indicating right-end support
of shaft

C, C_ =  functions defined in Appendix I

Cy’ C £ =  functions defined in Appendix I

Cu, Cr2, Cz1, Copp =  functions defined in Appendix I

Ci, Cz, ----- . Cn = translational damping coefficients,
respectively, at intermediate supports
1, 2, ---, n

E =  vector related to distributed driving

forces evaluated at x = 0 and x = {

e;, e e3 =  functions defined in Appendix I
1 1 =
c - L (=)
K! E
8
E8 = shear modulus for shaft material
Ey =  Young's modulus for shaft material
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Fll, Fll

Fa, Fa

Fl, Fz

H(x)

H, H

Kl

Kl: KZ: ST K

normalized components of internal
force along the X;, X3 axes,
respectively

normalized components of internal
moment along the -Xj;, X; axes,
respectively

internal force and moment vectors,
respectively

coefficient matrix related to the
impedance at the (k - 1)st support

Heavyside function

characteristic coefficient matrices at
the left- and right-end supports,
respectively

moment of inertia of shaft cross
section; also used to denote the
identity matrix

subscript indicating jth driving force

subscript indicating kth intermediate
support

shape factor for shaft cross section

translational spring coefficients,
respectively, at intermediate supports,

length of shaft

distance from origin of shaft to
location of nth intermediate support,
also used as the distance measuring
the location of the single intermediate
support in the transmission line
analogy analysis
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P(x)

q1, 92

ry,, rz

R(x)

>
U(x),

>>
U(x),

>>>
U(x),

<
U(x)

<<
U(x)

<<<
U(x)

superscript indicating a modified
deflection wave traveling through the
intermediate support

total number of driving forces

total number of intermediate supports,
also used as an arbitrary real
constant in the reformulation of the
integration coefficients A, B, C, and
D

normalized single driving force vector
at location x

normalized force vector

arbitrary constants used in the refor-
mulation of the integration constants
A, B, C, and D

arbitrary constants used in the
reformulation of the integration

constants A, B, C, and D

propagation matrix of a traveling wave
evaluated at x

coefficient matrix related to the
impedance at the (k - 1)st support

-iw

incident wave functions, respectively,
traveling to the right and left

reflection wave functions, respective-
ly, traveling to the right and left

total wave functions, respectively,
traveling to the right and left
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xl’ Xz. x!
x

Zu, Y2
Y2, Yz
Zy 2y 2y
p

T, (x), T (x), Ty (x)

€ (x)

i

right-handed orthogonal coordinate
axes

distance from origin to a generic point
on X; axis

normalized projections of the deflec-
tions of elastic curve of shaft on the
X1X; and X;X3 planes, respectively

normalized projections of the angles
of inclination of elastic curve of shaft
on the XX, and X,;Xj3 planes,
respectively

Impedances at left- and right-end
supports and kth intermediate support,
respectively

Vo
E1
y

reflection matrices at left- and right-
end supports, and the intermediate
support, respectively

normalized vector distance of mass
center from axis of rotation of shaft
evaluated at a distance x from the
origin

amplitude of the half sine wave defects
curve

rth normal mode of vibration for a
free-free beam

angular velocity of shaft and driving
forces

natural frequency of the simply
supported shaft

mass density of the shaft material
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SUMMARY

This report deals with an efficient approach leading to the
direct optimization of support conditions for the hypercritical shaft
flexibly supported on two mass-spring-damper units at the ends and
one mass-spring-damper unit at the interior. It is based on the
traveling wave concept as used in electrical transmission line theory.
The governing differential equation used in this analogy includes terms
which acccunt for the effects of rotating inertia, gyroscopic motion,
and shear deformations.

The terminating impedance corresponding to minimum
vibration response of a rotating shaft is the characteristic impedance
of the shaft. This condition is termed a '"'matched" condition. For the
shaft with both end impedances matched, no additional intermediate
support is needed for further minimization of vibration response.
However, when the shaft and end support irnpedances are not matched,
the closer the matched intermediate support is placed to one of the
ends, the more effectively it will minimize the vibration response of
the shaft.

Included also in this report is the development of an analysis
which predicts the vibration response in terms of given initial defects
for the hypercritical shaft on multiple translational mass-spring-
damper supports. The solution in this case is obtained “»y applyiag the
vibrating beam equation to each individual span between supports and
correlating the responses between consecutive spans by the use of
appropriate boundary and continuity conditions at the supports.

A computational procedure of the resulting simultaneous
equations has been programmed for the University of Virginia
Burroughs B5000 digital computer. A limited parameter study has
been performed for a siraply supported 4.5-inch-outside-diameter,
28-foot-long aluminum s:.:aft with one intermediate support. The
results tend to agree with the major conclusion of the transmission
line analogy studies which states that the closer the intermediate sup-
port is located to one of the end supports, the more effectively it will
minimize the vibration response of the shaft. Another important con-
clusion reached in the parameter study is concerned with the
observation that the vibration responses tend to decrease with
increased damping, provided that the spring stiffness of the



intermediate support is negligible. The effects of end masses on the
natural frequencies of shafts supported on two flexible exterior sup-
ports have been studied also.

Several conceptual designs for multiring damping assemblies
to provide the required damping for the Battelle model shaft and the
proposed Chinook hypercritical drive shaft have been developed with
existing computer programs. It was found that dampers having fre-
quency dependent characteristics are too massive for practical
application. However, by sacrificing these characteristics, light-
weight dampers using low viscosity fluids are feasible.



CONCLUSIONS

The studies in this report lead to the following conclusions:

1.

The transmission line analogy can be extended to shafts
having one interior suppo:t. For shafts having more
than one interior support, simplifving assumptions
should be introduced into the analysis.

For the shaft with both end impedances matchked with
the characteristic impedance of the shaft, no inter-
mediate support is needed to assist in the minimization
of vibration response.

When the shaft and end support impedances are not
matched, the closer the matched intermediate support
is placed to one of the ends, the more effectively it will
minimize the vibration response of the shaft.

The vibration response of a simply supported shaft with
one flexible intermediate support tends to decrease with
increased damping, provided that the spring stiffness of
the intermediate support is negligible. Changes in
damping of the intermediate support do not significantly
affect critical frequencies; on the other hand, changes
in spring cause appreciable shifts in the critical fre-
quencies. Massiveness of end supports will affect the
mode shape and critical frequencies of flexibly sup-
ported shafts.

The effects of dropping the rotational inertia, gyro-
scopics, and shear deformation terms from the equa-
tions of motion of hypercritical shafts are negligible for
the frequency ranges in which hypercritical helicopter
drive shafts are expected to operate.

Frequency dependent multiring dampers which accom-
modate the damping requirements for hypercritical
shafts on a one-to-one basis are too massive for practi-
cal application to the Chinook drive shaft. However, by
sacrificing variable damping characteristics, a light-
weight damper using the less temperature sensitive,
low viscosity fluids is feasible.



RECOMMENDATIONS

Work on the transmission line analogy should be extended to
shafts on many supports. However, in view of the complexity of the
ensuing algebra, it is suggested that the simpler vibrating equation
(which leaves out rotational inertia, gyroscopic motion, and shear
deformation terms) be used in the derivations of the wave forms. In
addition, studies are needed to investigate the effectiveness of sup-
ports having either translational or rotational characteristics not
both, as is required for an exact match of the shaft and support imped-
ances. Mathematically, the use of translational or rotational supports
only leads to the selection of conditions in which only the predominant
I§; term of the reflection matrix vanishes. It can be shown that as

exp(ez'\/wln) tends to zero (i.e., as w increases), the reflection

matrix tends to approach

Ty (40 ™ 4pn (2)

nyi n:

such that either a translational or a rotational support may just as
effectively suppress vibration response. This type of match is called
a '"quasi-match' and could lead to the development of simple design
formulas which predict the ''best' impedance values in terms of fre-
quency for a given shaft and support configuration.

Work on the vibrating beam analogy requires additional results
to complete the support parameter study. One should be able to
eventually establish the "best’’ intermediate support spring and damp-
ing coefficients and location for a shaft having a number of different
end support conditions. Furthermore, the analysis should be general-
ized to account also for supports having rotational spring and damping
characteristics. Eventually, optimum support values as obtained by
the transmission line analogy should be verified in a parameter study
with the vibrating beam analogy. Another use for the computer pro-
grams of the vibrating beam analogy would involve a numerical study
of permissibie runouts in terms of maximum mass unbalance values
for a number of realistic shaft defects configurations. Such a study
would be very useful in establishing fabrication tolerances.



INTRODUCTION

OBJECTIVES

The theoretical study of the performance of rotating flexible
drive shafts presently under investigation as a means of transmitting
power in Chinook helicopters has the primary objective of arriving at
analytical tools which will evaluate performance in terms of physical
quantities in a satisfactory manner. Analytical behavior studies are
usually undertaken to aid experimental programs in providing direction
and testing guidelines. At times they will eliminate the need for an
elaborate and expensive test program. Moreover, a complete under-
standing of hypercritical behavior of shafts is necessary in the
development of techniques for operation at and between "critical
speeds'' without detrimental effects.

Successful operation of flexible shafts is usually achieved by
balancing to reduce dynamic forces and also by introducing support
conditions (spring, damping, mass) which tend to minimize runout
amplitudes and/or bearing loads at the important critical frequencies.
Both of these techniques should be employed simultaneously to bring
about smooth shaft operation through the criticals. Although the pro-
vision of appropriate spring, damping, and mass coefficients {(imped-
ance) at the supports, by itself, may permit the rotor to negotiate the
criticals in an acceptable manner, the ease with which this may be
accomplished will be greater for tlie better balanced (less crooked)
shaft., Balancing of a hypercritical shaft may be achieved by either
the proper attachment of counterweights or the placement of greater
restrictions on the fabrication tolerances of the shaft.

Different mathematical procedures have to be developed for an
effective study of the relative merits of each of the techniques. The
analysis of a flexible shaft supported at various points along the length
by flexible damping bearings is represented with reasonable accuracy
by the steady state solution of the equation of motion for the beam
vibrating in two mutually perpendicular planes. This solution of the
"vibrating beam analog' is worked to simulate the performance of the
rotating shaft under actual running conditions in which the shaft defects
provide a disiributed forcing function. On the other hand, the solution
can be interpreted also in terms of a "transmission line analog." This
approach is based on the recognition of the existence of an analog
between the amplitude response of the vibrating beam and the voltage



variation in electrical transmission lines. Performing rather lengthy
but straightforward algebraic manipulations to the solution, the
dynamic responses arc expressed in traveling wave form along the
lines of electrical response waves in transmission line theory.

While the vibrating beam analogy solution provides a means of
theoretically studying the effects of imperfections and balancing in the
form of physically observable quantities (amplitude runouts and phase
shifts) allowing a direct comparison with experimental measurement,
the transmission line analogy solution is particularly useful for the
direct establishment of the support conditions needed for optimum
shaft operation through the criticals.

The purpose of this report is to present the development of
analyses for the rotating hypercritical shaft in terms of the vibrating
beam and transmission line analogs and to indicate the usefulness of
these tools in terms of representati e qualitative and/or quantitative
results. Presented also are concejual designs of squeeze film
dampers which could provide the support impedances required for
successful operation of certain hypercritical shafts. It is anticipatea
that the computer program 4nd the damper designs which resulted
from this work will be of use in the experimental studies of hyper-
critical helicopter drive shafts conducted by the Vertol Division of the
Boeing Company, Morton, Pennsylvania, and the Machine Dynamics
Group, Battelle Memorial Institute, Columbus, Ohio.

SCOPE
The studies covered in this report were concerned with:

1. An extension of the University of Virginia electrical
transmission line analog for hypercritical shafts to
include the effects of an intermediate support.

2. The development of a computer program based on the
vibrating beam analog which calculates the amplitude
runouts of hypercritical shafts on multiple flexible sup-
ports at given frequencies in terms cf stat.cally
measured defects (initial bow, ovality, wali thickness
variations).



3. The selection of two-ring squeeze film dampers to
accommodate the damping requirements in both the
Ba.telle shaft model and the 4.5-inch-outside-diamzter,
28-foot-long Chinook helicopter drive shaft.

In particular, this report presents the analyses associated with
the work developed under items 1 and 2. The significance of these
analyses is discussed in detail, Numerical results are presented with
the work of item 2 v'hich represents a preliminary parameter study in
terms of several different dampers and spring coefficients for the 4. 5-
inch-outside-diameter, 28-foot-long flexibly supported Chinook drive
shaft with one intermediate support. The work accomplished under
item 3 has been presented in earlier reports [ References 1, 3, and 4].
References 2 through 4 also deal with preliminary work performed
under items 1 and 2. Additional work performed under item 2 is a
numerical study on the effects of end support masses on the critical
frequencies of shafts on two exterior spring supports. This work has
been reported in Reference 5.

The analysis based on the transmission line analogy is
concerned with the specific development of the traveling wave forms
for the uniform shaft flexibly supported on two rotational and transla-
tional mass-spring-damper units at the ends and one such unit in the
interior. No attempt has been made to consider multiple interior sup-
ports because of the complexity of the algebra. The wave forms for
the simple interior support problem are already the result of extensive
algebraic labor. However, the solution is kept in as general a form as
possible; that is, the rotary inertia, gyroscopics, and shear deforma-
tion terms have been retained. On the other hand, the analysis based
on the vibrating beam analogy applies to the rotating shaft on multiple
flexible supports, and in the governing differential equation the extra
inertia and shear terms have been neglected. In addition, the i :xible
supports are strictly translational in character; they do not resist any
rotat.~nal motion of the shaft. Computations show that the effects of
rota.  inertia, gyroscopics, and shear deformatior terms on natural
frequencies and runout amplitudes are negligible for the frequency
range in which hypercritical helicopter drive shafts are expected to
operate. Therefore, the simplified equations of the vibrating beam
analog should represent a reasonably accurate model of hypercritical
shaft behavior.



The transmission line analogy was first developed in 1961 by
Nelson [ Reference 6] on erd supports only. Independent of the
University of Virginia work, Voorhees et al [ Reference 7] of the
Battelie Memorial Instifute, Columbus, Ohio, formulated their version
of the transmission line anaicgy. Although founded on the same con-
cept of relating a supercritical shaft performance to a firmly estab-
lished and well-understood electrical problem, the two approaches are
quite different.

The Battelle analogy is a direct analog in which the fourth-
order differential equation of motion has heen reduced to an approxi-
mating second-order equation without the gyroscopic motion, rotary
inertia, and shzar deformation terms. To make this recuction in
order possible, a one-to-one relation between moments and deflections
of the beam is assumed which necessitates a compromise in the repre-
sentation of boundary conditions. The approach has the advantage that
all of the terminology and computational aids developed for the electri-
cal transmission line problem can be utilized directly in the design of
supports for supercritical shafts.

The University of Virginia transmission line analogy. on the
other hand, is not a direct analog, but rather a mathematical analog.
The fourth-order differential equation which governs supercritical
shaft behavior is solved in an exact manner. The various component
terms to the solution are then reformulated in such a manner that
these terms are mathematically analogous to the standing wave terms
in the solution of the less complex transmission line equations. In
this form, the solution to the fourth-order equation can be interpreted
in terms of the same physical concepts used for the electirical trans-
mission line problem. Thus the shaft runout is treated as a series of
deflection waves (voltage waves) traveling along the shaft (trans-
mission line). These waves are in part absorbed and in part reflected
at the supports (load).

10



TRANSMISSION LINE ANALOGY SOLUTION OF THE HYPERCRITICAL
SHAFT WITH ONE INTERMEDIATE SUPPORT

THEORY

1. Assumptions and Notations

It is shown in Figure 1 that the mathematical model of a pris-
matic shaft is embedded in a right-handed orthogonal normaiized space
coordinate system with axes X;, X,;, and X;. Let Sy represent the

shaft with elastic curve S. Let Ay and By, where the end supports are

attached, represent the end bodies with elastic curves A and B,
respectively. The intermediate support is attached to the shaft at
X= ln, where 0< fn<!. Force, torque. and motion along the X, axis

is assumed to be zero. Constiant angular velocity, small transverse
motion, axial! symmetry, and linearity are assumed throughout.

For peoints on the elastic curves, A, S, and B define ''position"
as the vector

S
s N Yn +i¥Y,,
X = * = % %

Y, Ya +i Yy

s s
where Y3 and Y,; are the projections of the deflections of the elastic
s
curves A, S, and B on the X, X; and X, X3 planes, respectively. Y
s
and 722 are, respectively, the angles of inclinatiol. of A, S, and B on

the planes X; X, and X, X; (see Figures 2 and 3).

Similarly, define "force' as a vector

$ %

* Ql Qll + i le
Q = = * *
Q; Qn +iQxn

11
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s s
where the Q;; and Q;, are the components of force along the X; and
® s
X, axes, respectively, and Qz and Q;; are the components of torque
along the -X; and X; axes, respectively.
The force vector P* denotes the "driving force' which can be

related to lack of straightness and balance in the shafts. The driving
forces are applied on the shaft at a finite set of points x = aj, j=1,

2, .. .Nandx is an element of (0,£), an open interval with end
points 0, {.

Similarly, let the force vector F* denote the "internal fcrce"
which applies to the differential mass element (see Figures 2 and 3).

2. Equations of Motion for the Shaft

The equations which govern the behavior of rotating shafts
include the effects of gyroscopic motion, rotational inertia, and shear
deformations. The projections of an infinitesimal element of the shaft
of length dx with all the forces acting on it are shown in Figures 2 and
3. The symbols used in these two figures are listed as follows:

"*" denotes the unnormalized variable
w = angular velocity of the rotating shaft

I = moment of inertia of the shaft cross section area
p = mass density of the shaft material
A = area of the shaft cross section

Considering the projection on the X, X,- plane only for the time

being, one may obtain the following two equations by applyiflg equili-
brium conditions (see Figure 2).

By summing moments,
* * * s
Fig - Fax - AYatt - 21w Yz = 0. (1)
By summing forces,

% %
F“x + AY“tt =0_ (2)

14

I Sl £ 59, b A -



o 5 v 8 N e -

By applying the shear relationship,

* * *
Fi, = KIAES (-Yux - Ya)

where

K! = numerical factor depending on the shape of cross
section

E_ = shear modulus for shaft material

Y;x = slope of deflection curve

y; = slope of deflection curve when shearing force is

* * neglected

“Yux - Ya = change of slope deflection curve due to shearing

force only

The above equation may be rearranged as
* * *
Fj; + K'AES(Y"x +Yy) =0, (3)

By applying the bending relationship,

*
* xllx
-FZI - ’
E1
y
where
&
Fa = moment on the differential section
*
Y ax = change of slope of deflection curve
.Ey = Young's mo.ulus for shaft material

The above equation may be rearranged as

* *
Fa + Eyryz,x = 0. (4)

15



Similarly, considering the projection on the X;X; plane which

is an imaginary plane, using the same arguments as befor<, one may
obtain the following four equations (see Figure 3).

 J t ]

Fia - Faax - PIY2tt + 2PIw Yzt = 0. (1)

. *

Frax + pPAY 3, =0, (2*)
t t t

FIZ + K‘AEB (YIZX + YZZ) = 0. (3')
$ ]

Fa + EyIYzzx =0. (4')

Combining each pair of equations such that equation (k) + i
equation (k') where k =1, 2, 3, 4, one may obtain the corresponding
four equations as follows:

* * * s * s s
(Fir +iFy2) - (Fay + iF22) - I (Ygq +iYz2tt) + 2ipw (Yati Yaze) = 0.
* . * I
(Fuux + iFi2x) + pA(Ynee +iYyett) = 0,
s __® ' * o T ]
(F" + lFlz) + K AES (Y"x + llex) + (Yz] + lez)J =0.
s s K
(Fz] + lez) + EYI (Yz]x + lezx) = 0.

Applying the notations for position vector and force vector as defined

at the beginning of the section, one may rewrite the above equations in
more compact forms.

16



* % * L
F; - Fax - pIY¥z + 2iplw Yt = 0,
t
Fix + pAY ¢t = 0.
t * »
F, +K'AE_ (Yix + Y2) = 0.
% %
F, + EyIYzX = 0,

For normalizing these equations of motion, Rb, EyA’ and
Rb/ C8 are used corresponding to unit length, unit force, and unit
time, respectively. Rb and C,8 are, respectively, radius of gyration

in bending and the velocity of sound for the shaft material. Note that

E
C8 = ‘/ —‘;Y— . Applying the standard procedures for normalization, one

may obtain the differential equations of motion in the following forms:
F) - Fax = Yt + 2iw Y = 0
Fix t Yj¢¢ = 0

Fz+ Y =0 (5)

e'F; +Y1x+Yz=0

1 E
where e' = (-f(—') TSL

The above motion equations in Laplace transform form are:

17



Fl '?D("’S(Ziw '8)?2':0 3

) (6)
Fo + Y =0

C'Fl"'?]x +?2=0 )

where Y, and Y, are, respectively, the transverse position and the

inclination of normal of the elastic curve of shaft.

In equation 5, eliminating F,, F,, and Y., one may obtain the
governing differential equation of the system in the following form:

Yixxxx + Yitt - (1 + e') Yy yuet + e'Yitert + 2i0 (Yixxtt - e' Yiger) = 0. (7)

With concentrated driving forces acting on the shaft, the steady
state solution to this differential equation may be represented in the
form

Y) = y(x) eiwt
where w = angular velocity of driving force and y(x) is of the form

y(x) = Ae™ ¥ 4 BT + CeT¥ + D™

where r,, r, r3 and ry are the roots of the characteristic equations

of the governing differential equation. A, B, C, and D are the arbi-
trary integration constants.

18



3. Solutions for the Equations of Motion

A more physical model of shaft which corresponds to the
mathematical model in Figure 1 is represented in Figure 4. The shaft
end conditions and the condition of the intermediate support are
described as impedances or mobilities, and P(aj) is the jth driving

force in the open interval (0,f{). The impedances are denoted,
respectively, as Z,(0), Z,(2) and Z (1 ) for the left end support, right

end support, and intermediate support.

Because of axial symmetry, the relation between the force

vector Q and the position vector Y may be written in either of the two
following forms:

~

5=sZY or ?=;MQ,

where '~' dznotes the Laplace transformation and s is the Laplace
transformation variable. Z and M are, respectively, called imped-
ance and mobility in 2 by 2 matrices with complex entries. It will be
assumed that the impedance or mobility of the supports is known or
can be calculated.

Taking the Laplace transformation of equation 7,

?lxxxx +s[2iw -s8(l +eY)] Vixx + 82[1 + se' (s - 2iw )1Y, = o.
Let ?; = Ae'* + Be™Z + Ce™¥ + Der‘x. then

r*+e[2iw -8l +e)]r? +s[1+se'(s- 2iw)] =0,

which yields

r, r; = xie; Vm

19
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where

-"l
el - = J.e'w
€3

and gives

where

€2 - 83'e'(0,

By applying the relationships in equation 6, one may derive the
expressions for Y,, F,, and Fp:

> v o[- i rpx , _d TX | &2 T 4 &1 peléX
Y2 w[ eye; £ N € €3 Be e €2 ]

g
]

- w2 [- X Ae™*+1 Be™ ¢+ L ger>. 1 De" ).
€3 el (-F1 (-F]

f; wf- el Aef1 - elaBerzx+ esCe’ ™ + e;Der‘x].
3

Introducing another arbitrary set of constants, q;, q,, r,, r;, such
that
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i ntl}
A= "s—@ ejesr)
_ 1 nt}
B=-— sieyq
i ntl
C=-—uw e;r;
8
i ntl
D = -?w ezQz,

one may rewrite the expressions for Y., Y;, F,, F, as fcllows:
~ -3 - i y
Y, = %J’[-e,e,we o \[axq, -~iewe ezﬁuqz - ieeqwe’ ! ‘/a”‘r; ~iezwee‘ﬁ:’xrz]

?z = % “P[“}/Z e'iex ﬁqu -ieﬁ’/ze-ez'la‘qz - w;/z iey mer. + iew;/zeez v-axrz]

(3)
F=d -ieﬂ/ze.ie' \/qu‘ + “;/ze‘ez\frqu tie zeiexﬁl"xrl - d/zeeaﬁmn] ?

.l-:;= wn[elm-xeﬁrqu - ezea"’e-ezm‘h + ex"’ele' le'x - ezes‘ﬂeez Vaxrz]

Q r)
Defining q = [ } and r = [ } , two arbitrary constant
q2 r2

vectors in a two-dimensional complex vector space, the above four
equations may be written in the following compact form.

(-
[Y.I c, O [c,, G2l [Rx) o q
l:

F. 0 C, | [Cu Ca 0 Rkx)| |r

o |—

9)

where Cy’ Cf. Cn. Ci2, Cz2y, and C;; are given in Appendix I. The

"propagation matrix'' R(x) is a function of the real numbers defined by



[ cis (e,\rax) 0

R{x) =
L 0 exp (-exywx) J
where
. 0 _ ..
cisf = e = cosf + isinf
expf = eg.

Simply by expanding the matrix form of equation 9, one may verify this
equation to be the same as equation 8.

4, Boundary Conditions

Applying the boundary conditions at x = 0, aj, ln, f on the X,

axis, one may determine the integration constants appearing in the
lution of the differential equation (sec equation 9).

The boundary conditions empioyed here are:

atx =0, -F(0) =s2_(0) ¥ (0);

t = , ~ - :~

at x aj Y(aJ 0) Y(aj+0),
F(aj-0)+§(aj+0)=0;

atx =0 Y -0=Y@_+0),
F_-0-Fo_+0=sz (0)T(_-0);

at x = ¢ F(f) =82, ()Y (9);
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where -0, +0 denote, respectively, the limit from the left and the
limit from the right.

5. Reflection Matrices at Supports in Terms of Characteristic
Impedances

Several functions are useful for the process of evaluvating
boundary conditions. At x = 0 on the X, axis, the reflection matrix
I'a(O) is defined in terms of end impedance by

ra (0) =[-Cz2 ¢ %a (0Ciz) ' [Ca - 93 (0)Cn ], (10)

where

At x = { on the X, axis, the reflection matrix T, (2) is defined by

L) = [-Czz+ 2 (NCi[' [Car - 2z, (1) Cni ), (11)
where
1 #4# # 1 o0
. =\/-5‘FZF’ F=I? v

At x = fn on the X, axis, the reflection matrixI} (ln) is
defined in terms of Zb(l‘) and Zn(ln) by

rL,) = [-Cez + zbn(fn)cxz 1 [Cay - zbn(ln)c" 1, (12)

where
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zbn(ln) :zb(’n) ¥ zn“’n)

zp(0) = [Car + Coa T (€ )] [Cuy # CraTp (£ 0]

On the closed interval [0, ] reflection matrices I‘a(x) , T' (x)

(]
and I‘bn(x) are defined, respectively, in terms of I‘a(O), I‘b(f) and
I‘bnwn) by

Fa(x) = R(x)l"a«(O)R(x)

l"b(x) = R(f - x)l"b(l)R(f - x) (13)

I‘bn(x) = R(ln - x)l"bn(fn) R(fn - x),

6. Impedances in Terms of Reflection Matrices

On[0, f]it can be shown that %a(x) is related to I‘a(x) by the
equation

2,00 =[Car+ C22 T ()] [Cu + CraT, (0] (14)
Similarly, for z, (x) and T, (x) on(0, 9,

zp(x) = [Cay + Cz2T (x)] [ Cu + Clzl"b(x)].,l (15)
and, for z, (x), Iy (x)on(, 9,

zbn(x) =[Czy + CeoTy (x)] [Cn + Clzr'bn(x)]..l (16)

Thus, Za' Zb and an may be calculated on {0, ¢].
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Let
zg = Cay Cn ! amn

Zg is called the characteristic impedance of a semi-infinite
shaft looked at from the right. Similarly, %0 is called the character-

i~tic impedance of a semi-infinite shaft looked at from the left.

1. Solutions in Wave Form

After determining the integration constants in terms of support
conditions and proceeding with a lengthy algebraic manipulation of the
resulting equations, one may express equation 9 in the following
traveling wave forms for N concentrated driving forces P(aj) on{0, £ ],

applied at x = a;, az. . . ., aj. .. -aygon the X, axis.
Y7 [‘lC 07 rcCn Ciz - ”;?:)_
J = (Y ! L (18}
F l. 0 c lcz, C2z) LG(T\J
where
>>> > >

U(x) = U(x) + U(x)
<LK << <
U(x) = U(x) + U(x),

For 0<x</{ ,
n
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N
Ulx) = Z R{x - aj)C+Cf-‘§ (aj)[H(x - a}.) - H(x - ln)].

(exists only in aj<x < ln)

j=1
< N -~
= {a - 1 -
Ulx) Z R‘aj x)C_Cf P’(aj)l-l(aj x).
y=1 (exists only in 0<x<aj)
>> > <

U(x)= RGj[I-T, (0K, (0)] 'L (0) [R( )T, (£ )U (L )+U(0)]H(E -x).

(exists only in 0<x<£ )

<< >
Ubd = R(Z_ - x)[1- T _(£)C@)]17'E,_(1)[U(L)

L 4
+ R(En)Fa(O)U(O)]H(ln - x).

(exists only in 0<x<ln)

For £ <x<{,
n

> > >
U(x) = U™ (x) = R(x - L){1+cy "C,zrb(in)]"[x +Cy ! Cial'y ()] UL -O)H(x-1 ),

(exists only in !n>x>!)

>> >> - - - >>
Ulx) = U™ (x) = R(x - !n)[I +Cyy lcurb(!n)] 1+ Cy'! C”rbn(ln)lu (ln‘ O)H(x-ln)_

(exists only in !n<x<!)

< < >
Ux) = UT(x) = R(L - )T, (DU (OH(x - 1 ). (exists only in §_<x<1)
<< << >>
U(x) = U™(x) = R(! - X)Fb(l)Um(l)H(x - !n). (exists only in !n<x<!)
0 p<o
H(p) = and I = Identity matrix.
1 p>0
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DISCUSSION OF RESULTS

1. The Traveling Wave Concept

The steady state wave interpretation of the solution of equation
18 provides a means toward visualizing the effects of support param-
eters (mass, spring, damping) on hypercriticai shaft behavior.

Incident waves traveling along the shaft are considered as being
lmtlated by the action of a single driving force P(a ) located at x = aJ
U (x) and U (x) are defined, respectively, as mc1dent waves'' traveling

to the rlght and left from x = a,. They are independent of all support
conditions. )

U(x)-R(x-a)CCf ){H(x-a)-H(x-ﬂ)].

<
Uj(x) = R(aj - x)C_Cf-"l;(aj)H(aj - x).

The propagation of the wave from the point of application, x = aj, of
the driving force P(a.) is described by the ''propagation matrix, "

R(x - 3y ) or R(aJ = x) as the wave is traveling to the right or left,
reSpectlvely. Thus, at x = { 0 U (x) has traveled a distance (fn - aj)

to the intermediate support of the system. The quantities

[ H(x - aj) - Hx - fn)] and H(aj - Xx) simply indicate the regions in

¢ | and C_Cf_l perform
elementary trans{ormations or operations on the applied forces and are
associated with frequency and shaft characteristics.

which the waves exist. The quantities C, o

>>
A similar interpretation may be given to the quantities Uj(x)

and Uj(x), which are regarded as ''reflected waves'' traveling to the

right and left, respectively. They may be expressed as follows:
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>> > <
U0 = RO - T 0T, (O T O)[ RUIT, (1 )U(L) + U, (0)JHE,, - x).

<< > <
Uj(x) z R(!n -x)[1- l‘bn(ln)l‘a(ln)] lI"bn(ln)[ Uj(fn) + R(!n)l"a(O)Uj(O)]I-I(ln - x).

The second term in each expression may be restated as an infinite
series:

[1- I‘a(O)r‘bn(O)]'i =1+ _(0)T (0) +T ()5, (0)T,(0)T, (0)
+ T, (0, (0)r, (0)r, (0)T_ (0)r, (0) + ---

[1-1 (!n)ra(fn)]’l 3 + rbn(iﬁ)ra(nn)j Ebnfnn)ra(.f.r})rbn(ln)ra(in)

rd

i ii iii
+\ 1-‘bn(f n)r.a(2 n) l-‘bn (in} I-.a (2 n)rbn“n) I-.a(l n), tooo
1v

Calling the first term i, the second term ii, etc., as noted above, one
gets for j(x) s {again H(!In - x) restricts the range of the waves to

the open interval (0, Rn)_):

>> > <
Uj(x) li = R(x)I‘a(O)R(Qn)I"bn(ln)Uj(in) + R(x)I‘a(O)Uj(O),

<
The last quantity, Uj(O), represents an incident wave traveling to the

left at the point x = 0; i.e., the left end of the system. If the quantity
I‘a(O) signifies that this wave has been reflected at x = 0, then the

reflected wave now traveling to the right has propagated the distance x,
as indicated by R(x). Similarly, the last quantity of the first term,

>

Uj(fn), represents an incident wave which is traveling to the right and
is located at x = En; i.e., the intermediate support of the system. The
quantity I‘bn(ﬂn) signifies reflection of this wave at the intermediate

support, x = Qn. The next term, R(Qn), signifies propagation of the
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reflected wave to the left through the distance Qn which locates it at

the left end, x = 0. The wave is now reflected again to the right as
indicated by r‘a(O), and R(x) signifies propagation through the distance

>>
x to the point under investigation. Thus the term Uj (x) :i represents

the contributions of two reflected waves to the right immediately fol-
lowing the initiation of the incident waves. This is illustrated in
Figure 5.

Now, consider the second term, ii, of the expansion for
- "1
[1- T (05 (0],
>> > <
Uj(X) I = R(X)Fa(o)rbn(o)ra(o)R'(ln)rbn(fn)Uj(fn) + R(X)Fa(O)an(O)Fa(O)Uj(O)-

which may also be written as

>> >
U5 155 = ROIT, ORI )T, (0 JR( )T {O)R(F)T, () U(E)
<

+ R(x)'“’(_o)R(Pn‘;r‘bn(ﬂn)R(ﬂn)I‘a(O) UJ.(O).

>>
Following the same reasoning used for the analysis of Uj(x) ?i.

one may observe that the added terms correspond to the wave propa-
gating and reflecting an additional two times with the reflected wave
again traveling to the right. This is shown in Figure 6. The addition
>> >>
of the rest of the terms in the series, i.e., Uj(x) ’iii’ Uj(x) ’iv' etc.,
accounts for all of the reflected waves traveling to the right. The
summation of all of the waves traveling to the right is complete if the
incident wave is added to the above; i.e.,

>>> > >> >> >>

Uj(x) = Uj(x) + Uj(x) |i + Uj(x) ,ii & Uj(x) 'iii t+ ---

> >>
= Uj(X) + Uj(X) :
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Fiqure 5.
Portion of the Shaft.
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Fiqure 8. First- and Second-Term Propagation of
Waves in the (o,8,) Portion of the Shaft.
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<<
Similar results may ve obtained for Uj (x). That is,

<L <L <L <L
g it + P
Uj(x) Uj(x) li Uj(x) i Uj (x) i

<< <
The summation of Uj(x), the reflected wave to the left, with Uj(x), the

incident wave to the left, includes all of the waves traveling to the left
as they are observed passing point x on the shaft.

The complete response on the open interval (0, n) at point x

may be determined by properly combining all of the waves traveling
past point x in both the left and right directions. The expansion of
equation 18 for Y in terms of N driving forces P(aj) at x = a;, az,

..aJ’ ...aN’

>>> <<<L

Y= cy[c,, U(x) + C2U(x)],

o |—

indicates the relatively direct manner in which the waves are combined
to obtain the total response at point x.
In examining the portion of the shaft (£ o’ f) in terms of a single
>
driving force P(aj), U}n(x) may be thought of as a ''modifie 4 incident
wave'' which is initiated by the driving force at x = 8, traveling to the
>

right, as indicated by Uj(x) on (0, £ ):

> - - - >
U;n(x) = R(x - ln)[l +t Cy ‘C”rb(ln)] Hi+cy ‘C”rbn“n)]ujan - O)H(x - £ ).

> >
After propagating to x = ln. Uj (x) becomes Uj (ln - 0) and then partly

passes through the intermediate support after being modified by
[1+¢c, e 2T, (£ )], a characteristic matrix of the intermediate

support. The other part of the wave is reflected back to the left from
the intermediate support, as shown in Figure 7, The second term of
the above expression may be written as an infinite series:

33



P(ij)
L j |
X=|O X=|aj G(x) )(?iln le
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Fiqure 7. First=Term Propagation of Modified Ircident Wave

in the (£,,2) Portion of the Shaft.
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[1+Cu ' Cual ()] = 1+ (-Cu 'CAT, (! )+ (-Cu 'Cid(-Cu ‘G, (1)
o » [ - »
i i i

*('Cu-'Cu)('Cn-'Cu)(’Cn-’Cu)rb('n) +---.

"

v

Again, the order of the te.ms is indicated by i, ii, iii, etc. Consider-
>
ing U‘;n {x) and taking, for the time being only the first term i of the

above expression,

> >
U?‘(x) L= Rx - 4)[1+Cy ‘cult*,mﬂ'n)lujuvn - 0)

which signifies the wave passes through the intermediate support and
has propagated a distance {x - En), as indicated by R(x - fn). This is

also illustrated in Figure 7.

Consider now the second term, ii, of the expression for
{I+ cll lclzrb(in)] ! '

> >
U;n{x) iy = Rix - £)(-Cyy ‘CIZ)Pb(!n){I + Cn ‘C”rbn(ln)]uj(!n - 0),

which may be rewritten as

> ) >
U;n(x) lig = Rlx - £ )(-Cn 1CG)R(L - L )T (OR(L - L1+ c"'lc,,rbn(gu)]uj(gn-o).

Following the same reasoning as before, one may observe that the
added terms correspond to the wave propagating to the right after
being reflected twice, first at the right end support and then at the
intermediate support. It is shown in Appendix II that the term

(-Cn 'Cy3) corresponds to a reflection matrix of a fixed support. This
means that the intermediate support acts as a fixed support, which
reflects the modified weoves coming from the right after being reflected
at x = { and will not permit these waves to pass through. This is
illustrated in Figure 8. The same analysis may be applied to the
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e e

remaining terms of the series. Similar reasoning may be applied to
>> >
U;n(x), which has the same form as U;n(x).

>> ) ] >>
U;n(*) = Rx-2)[1+Cy, 'Cnrb('n)] H1 *Cn-'cnrbn(!n)uj(!n - OH(x - £ ).

The summation of all of the waves traveling to the right in
(ln - £) is complete if the ""modified incident wave' is added to the

above expression; i.e.,

>>>

> >>
u;“(x) = U}“(x) + U;’“(x).

< <L
Similar results may be obtained for U;n(x) and u;"(x), the

waves traveling to the left,. The summation of the waves in the inter-
val (ln, {) of the shaft is

<<L

< <L
U () = UZ() + U;"(x)
> >>
= Rt - )T ([ UF(0) + U ]Hx - L)

The mechanics of the propagation of these waves is illustrated in
Figure 8, using the first two terms of the expanded form.

The complete response at point x in (ln. f) due to N single

forces P(aj), at a;, az. . ., aj . + .» 8y may be determined by

properly combining all of the waves traveling past point x in both the
right and left directions.

>>> <<<

?' = CY[ C“Um(x) + C]zUm(x) ] ]

@ |
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2. Impedance Matching

The response of the system of Figure 4 in terms of a single
driving force, P(aj), is

~ 1 >DO> <<<L
Y==C|C,U.(x})+ C,;,U.(x}].
s y[ 11 J( ) 12 J( )]

By proper control of the conditions at both ends and the intermediate
support, tie reflected waves may be eliminated or at least minimized
such that the response consists solely or principally of incident waves.

Mathematlcal representatmn of the above statement is to set U (x):
U (x) and U?x) U (x) or U (x) fﬁx)- 0. According tn equatlon 18 n

terms of a smgle dnvmg force P(a ), the condition U (x) = ﬁ (x)=0 may
be obtained by setting

r (0)= I,(f) =T, (1 )=0.

Physically, this is equivalent to setting the impedance of the supports
equal to the shaft characteristic impedance at those points. That is,
the shaft has been ''matched'" at the supports.

If the above conditions are satisfied, equation 18 may be
rewritten in terms of P(aj) alone as

~ >
Y r CY 0 Cu G, Uj (x)
~ - <
F 0 C Ca1 Ca. Uj (x)
where, for 0<x ln ,

>
Uj(x) = R(x - aj) ’:+cf"P(aj)[H(x - aj) - Hix - £ )]

<
U () = R(a, - x)c:_c:f"?v(aj)H(aLj - x).
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For f <x<{,
n

> >

>
Uj(x) = U;n(x) = R(x - Qn)Uj(ln - 0)H(x - ln)‘

Examination of these expressions yields the following observations.
The incident wave initiated from the driving force P(a ) at X = aJ has
traveled to the intermediate support; this is specmed by U (l - 0).

The weve then simply passes through the intermediate support without
any modification into the interval ¢n<x< £. One may conclude from

this that if both end impedances are matched with the shaft character-
istic impedance, i.e., I‘a(O) = l‘b(l)g 0, the effect of the intermediate

support on the shaft's dynamic behavior is redundant. actually, fur-
ther inspection of equation 18 shows that even if the intermediate sup-
port were not optimum (the incident wave is now modified in [!n, 1),

its effect is redundant. Thus, from a practical point of view, if the
end impedances can be matched with the shaft characteristic imped-
ance, nothing is gained by the optimization of the intermediate support
in terms of .ninimum vibration.

The matching of end impedances with that of the shaft is a
formidable task, not only because impedances are a function of fre-
quency, but primarily because of the uniqueness of the conditions
required to control these impedances. Moreover, in practical appli-
cations, the choice in end support configurations is limited, since they
usually are governed by such factors as transmission gears, couplings,
and unwieldy mountings. Thus, the intermediate support has to be

employed for optimization purposes, since the end impedances are not
available.

Examining equation 18 in terms of P(aj) again, the waves which

are reflected by the intermediate support or pass through the inter-
mediate support with modifications are:
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>> . > <
Ujx) = RE(1 - LO)T, (0)])7'r (O RIL)T, @)U ) + UL, - ).

<< > <
U;(x) = R(L, = 21 - T (T, ()17 (L)1) + RI)T, OV (O)TH(L, - x).

> >
U;n(x) = R(x - £ )[1+Cy, 'Caly (L )] 1+ Cy "curbn(tn)]uj(tn - OH(x - £ ).

>> i i i >>
U;n(x) = R(x - ln)[l +Cy, 'szrb(ln)] 11 +Cyy lcurbn(ln)luj(ln - O)H(x - l,n).

<<<

U;"(x) = R(L - x)1, ()] ;;n(!) + :l');“(l)lﬂ(x- -1).

If the intermediate support is optimized, i.e., the support impedance
is matched with the shaft characteristic impedance at that point looking

to the left (see Figure 4), or T, (£ )= 0, the above expressions may
n n
be rewritten as follows:

>> < )
Uj(x) = R(x)I‘a(O)Uj(O)H(!fn - x)

<<

Uj(x) =0

> >

U;n(x) = Rx - L1+ Cy "Cal (L) 17105(L, - O)H(x - L) L om0
>> . _>>

U x) = RGx = 2071+ Cu'Cly (1) 171 UL(2, - O)H(x - 2)

<<<L >

U‘Jf“(x) R(L - \)T (R -1 Cu'Giz B ()] UL, - 0)

+ Bj.(zn - 0)]H(x - )
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It may be seen frori the above expressions that the only remaining

reflected wave on (0, £ ) is U (x) which is an unavoidable situation
<<

since the left end support is not optimized. However, since Uj(")=°'

it will not be reflected at the intermediate support, and from a vibra-
tion minimization standpoint it is optimized on (0, ¢ ) Examining the

last three expressmns one may note that the mmdent wave U (x) and
reflected wave UJ (x) on (0, ¢ ) will travel to x = ﬂn to pass on to

n, ) and never return to (0, ﬂn) again. The modified wave will
propagate back and forth in the (f’n, {) interval to be damped out even-

tually by the unmatched impedance at x = . It should be remembered
that for the waves in this interval the intermediate support behaves as
a fixed support and will reflect all of the incoming waves from the
right. Proper interpretation of equation 19 is, then, that the inter-
mediate support cannot be optimized to effectively suppress the waves
which have propagated into th. span or interval adjacent to the span in
which the driving force acts.

If the driving force P(aJ.) were to act in the (¢, ﬂn) span,

£n<aj <{,the following should be observed. The equations for the

resulting waves may be obtained by proper permutation of the symbols
in equations 18 and 19, Again the impedance of the interior support
an(ﬁn) works as a filter; this time the incident waves traveling to the

left and the reflected waves as they travel from the right end support
will pass through in a modified form to (0, ﬂn); and, as in the case of

P(aJ.) acting in (0, Qn), the modified waves will be blocked on the way
back by the interior support. Eventually, they will be damped out by
the impedance at the end support x = 0.

If an interior impedance rather than an end impedance were to
be used for optimized control of the vibration amplitudes of the rotating
shaft, it should be recognized that disturbing forces P(aj) in the span

l < aj <{ could upset the effectiveness of the interior impedance, due

to the fact that the resulting waves in the (0, { ) span have to be
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suppressed by the impedance at x = 0. Similarly, the waves generated
by forces P(aj) in (0, £) have to be damped out by the impedance at
x=F0.
<<
One obvious way to suppress the Uj (x) wave is to let I‘b(f) be

identically equal to zero, i.e., optimize the end support at x = {, but
it was agreed that, in general, the end conditions are such that they do
not lend themselves very readily to optimization.

In view of these facts, the minimization of vibration response
in a shaft by means of an intermediate support may be accomplished by
letting it approach the support on the right end of the shaft as closely
as possible while meeting the condition of matching the shaft imped-
ance looking to the left. Mathematically, this is indicated in the last

<

of equation 19, where as ( - lnapproaches zero, Uﬂ?’(x) also

approaches zero. In other words,

<<< . o > >>
U = R - x)T (A1 + O Cualy, ()] UL - 0) + U(L - 0)]Hlx - £ )= 0,

since I‘b(ﬂ) becomes I‘bn(ﬂ); 0 and R({ - fn) approaches I.

It may be said, then, that the closer the matched intermediate
support is placed to the end support, the more effective the amplitude
suppression will be in the (ﬂn, ) portion of the shaft. If the intermed-

iate support were to coincide with the end support, the system would

behave as a shaft having only one optimized end. That is, all reflected
<<
waves would be suppressed eventually, since U(x)= 0. It should be

noted, then, that one optimized end support will suppress all reflec-
tion waves and that the impedance will have the same value whether
one or two optimized end supports are used. The only difference
exists in the amplitude response; it is the larger in the case of one
optimized support. How much larger it will be depends on how far the
impedance value of the other support is from optimum.

In conclusion, it is recommended that the interior support be
placed very closely to one of the end supports and that some sort of
mounting be used in the end supports to aid in the dissipation of modi-
fied traveling waves.
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3. Determination of the Matched Impedance of the Interior Support

The optimum impedance, Zn(!n), of the intermediate support is
determined from the condition, I'bn(!n) = 0. Using equation 16 and
comparing the result with eqguation 17,

zbn(!n) = CyCy ! = z,.

zbn(ln) = zb(!n) + zn(ln),

then after establishing zb(ln) experimentally and computing zn(ln), tne

optimum impedance of the intermediate support

Z Z
I nn m2
z,(t) =

L
- Z
nz) nzz ¢

may be obtained from

] # #
zn(!n) = v;_FZn(ln)F,
where
g 710
F =
0 /el

Y4 > i-
The components Znu , Znu, an ’ and n;, MaY be correlated to physi

cal parameters in the following manner. Let a point support C 0 having
a mass Cm exist at ln of the shaft. r g is the radius of gyration of C0
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about axis of symmetry, r_ is the radius of gyration of C . about a
diameter through the center of gravity of C,» and @ is the angular
velocity of Co about X, axis (see Figure 1). Let a translational spring,
Ki, and damper, C,, be applied to the center of gravity of C in a
symmetric fashion about the X, axis, furthermore, let K; and C,,

respectively, be symmetrical rotational springs and dampers applied
at the center of gravity of C,, then the impedance of Zn(!n) may be
written as follows:

1 0 - r 1 0 " s 0
= K, !
Znan) i | c —f * -;L ‘\- }+ Cm[ }
-0 E;L 0 KK, 0 ar:n - (iw )r;_j

The Znlz and Zna are different from zero if the damper and springs
are not applied to the center of gravity of C,. The other two com-

ponents are for the case in which the forces are applied to the center
of gravity of C:

2z =gq+B8ic s
] m

nyy

and

= .L(.z 2 _ 1 2
Znu Cz + +Cm[srm (xw)rg].
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VIBRATING BEAM ANALOGY SOLUTION OF THE
HYPERCRITICAL SHAFT ON MULTIPLE FLEXIBLE SUPPORTS

THEORY

1. Mathematical Model

The system investigated consists of a rotating shaft supported
at an arbitrary number of locations along the length of the shaft on
mass-spring-damper units which resist dynamic loads by translation
only. The shaft rotating at angular velocity w is forced by its mass
defects distributed along the shaft length. The mass defects are
obtained from statically measured quantities of initial bow, ovality,
and wall thickness variation, aad indicate at any given cross-sectional
station along the length of the rotor the magnitude and direction by
which the mass center deviates from the axis of rotation. It is
assumed here that the axis of rotation coincides with the elastic line of
the cross sections of the shatft.

The solution of the equation of motion is accomplished by
dividing the system into a number of subsystems. These are analyzed
independently and combined eventually by means of the appropriate
boundary and conditions at the suyp >orts. The system is shown in
schematic form in Figure 10.

2. Solutions for the Equation of Motion

The governing differential equation of the motion for any span
of the rotating shaft is in its nondimensional form:

Yixxxx t Yitt = “’zf(x)eiwt (20)
where
Yy = normalized runout amplitude in complex coordinates
X = position coordinate along axis of the shaft
w = angular velocity of the driving forces
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€(x) = normalized vector distance of mass centers firom

axis of rotation

The steady state solution of equation 20 for any span between
two succeseive supports, lk-l and lk‘ is

Y, = y(x)el®! (21)

where

y(x) = Aklcosth + AkZSinhﬁx + Ak3cosﬁx + Ak4sian

o el 0

e

Ayir Aggr Ayg. and Ay, are integration constants and

4
s B4
B = VP'ET“’M

y

-,

b

€. T [ €(x}p_(x)dx

lk-l

¢r (x) normal modes of vibration for a free-free beam
coshnfw _x + cos\f© x - Osinbyfo x + sinyfw_x)

in which for the first five terms,
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r v W, O'r
1 4,7300388 0.9825022
2 7.8532045 1.0007773
3 10.995607 0.9999665
4 14.137165 1.9000015
5 17.278759 0.9999999
and for r>5,
m
‘v’;r =3 (2r + 1)

Ze-/‘:r(cowr-sixﬂo—r) - Zebzmr

U =1 - aa— §
T 1 - Ze#rsidﬁr -e 2Va,

3. Boundary Conditions

The boundary conditions at each extreme end of the shaft are:

at x = O Y, xx(0) = 0; Yigxx(0) + 2, Y1(0) = 0,
x = 1 Yixx(?) = 0; Yiox(f) + Z, Va(€) = 0
where

n = number of intermediate supports

Zk ) ‘ﬂ‘ + iCléu - Mkmz complex force per unit displacement
(impedance) at kth support

Kk = gpring coefficient at kth support
Ck = damping coefficient at kth support
Mk = mass of kth support
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Substitution of the boundary conditions into equation 21 yields

i Aal - Aa, =0
! z, z, z,
; A +--2 - T —
Bs a Bs a: Au 3 L § (0)

[co-bﬁ] Ay, * [linhB] Ay, - [cosB] Ay, - [linﬁ]Ab‘= 0

[linhB +-z—b- cosbﬁ] A, +{coshB + E—b inhf8 zb
53 by c B; ] Abz + [linﬂ + -B_!- cOlﬁ] Ab;
Z Z
- _b —)
+ [ cosf + 5 sinf Alu Py YIP“) .

where Y = Z
Let
1 0 -1 0
Z Z
-2 1 —% -1
- 3
H_ B B
0 0 0 0
Lo 0 0 0
and
0 0 0 0
Hb 0 0 9 0
=1
; conhﬂ linhﬁz -co;B -sinf
; z
| sinhf +-—-coshﬁ coshf 42 sinhf sin8 *—bcmB -cosf "“&iﬁ
§ L g’ g? g* K3
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Also let

A 0
(O [ \
a
Ak:c -—B—;YIP(O)
Sy Bl )
3
Z
b
\ a/ L ety

The boundary conditions at x = 0 and x ={ may be written in
matrix rotation as follows:

HA +HA -E. (22)

Boundary and continuity conditions at the kth intermediate support are:

Y, (lk"' 0) = Y, (lk = 0)

Yix(£, + 0) = Yix(f, -0

Yixx(£, + 0) = Yyxx(fy - 0)

lexx(!k"’ 0) = Y xxx(fk‘Q"’ Zle (lk < 0),

where -0, +0 denote, respectively, the limit from the right and the
limit from the left. When expressed in matrix rotation, these equa-
tions may be written as

z Z

_ k K
SicPr1 = St "ﬁ";'TkAk ¥ _‘;Bk ' (23)
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where

Y (¢
\

Dividing by Sk‘ equation 23 becomes

1P k)}

_coshBlk sinhBl, cosBl,
sinh.Blk coshB!k -sinB!k
coshﬁlk sinhB!k -cosBlk
sinhB!k coshﬁ!k sinﬁlk

0 0 0

0 0 0
0 0 )
-cosbﬁlk sinhBlk cosBlk
( 0

Zx

1 Zy -1
Ay 1+ Py S, ' Ty] Ay +-B-;Sk By .
where I = identity matrix,

Let

P, =5, l'rk and Q= sk"Bk ;
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then from the recurrence formula,

Z

z
_ k Lk
A, - [1+-B—3-pk] A t—Q .

g3
it follows that

Ab RbAa * Gb’

where if

then

b 83
Z
R_= [1+-21 ] ..
n B3 n-1
Za
R, = [I+—B—3‘ Ra,
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and

Gb—%;Qn+ f1+——P ]G,

Z -1 z
G, = ’;3 Q _,+ [1+ ;,lpn-l]Gn-l’
G,=-—Q + [1+—P ]G,

Substitution of equution 25 into equation 22 yields

H A +H [RbAa + Gb] = E,
Rearranging terms,

ac [mrmpr] 7 [E-mG) (26)
Solvinq for Aa’ all other coefficients, A‘b' An’ --, Ak’ --, A;, can be

obtained with equations 24 and 25. The amplitude runout at any span
(2 oy [ k) can then be computed with equation 21,

NUMERICAL RESULTS

1. Computer Program

A computational procedure based on equations 21, 24, 25, and
26 has been programmed for the University of Virginia Burroughs
B 5000 high-speed digital computer. Typical numerical results are
presented in the next section.
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A flow diagram of the computer program is presented in
Appendix III. It will compute the runout amplitudes in terms of given
frequencies at an arbitrary number of points for any initial defects dis-
tribution for a shaft flexibly supported at as many points as possible
from a computational standpoint. This maximum number of supports
feasible for any given computer run depends on the rate of convergence
of the numerical solution of equation 26, which decreases rapidly with
an increasing number of supports. It is believed that a shaft having
five intermediate supports represents a practical upper limit that can
be processed with any reasonable speed and accuracy.

2. Presentation of Results for Parameter Study

A limited parameter study in terms of several massless spring-
damper configurations has been performed for the 4. 5-inch-outside-
diameter, 28-foot-long Chinook drive shaft running on one intermedi-
ate support. This support is located at one of the following points:
one-eighth, one-quarter, and one-half span. The end supports are
assumed to possess the characteristics of a simple support, while
the intermediate support has any one of the following spring-damper
combinations:

Configuration K 1b. /in. C 1b. sec. /in.

1 0 0

2 1060 0

3 10600 0

4 0 1,954
5 1060 1.954
6 10600 1.954
7 0 5.863
8 1060 5.863
9 10600 5.863

The dimensions and input values used in the parameter study
are shown in Figure 11. The results of maximum radial runouts of the
shaft at given frequencies in terms of the above listed parameters are
presented in graphical form in Figures 12 through 36. For the sake of
simplicity, the initial defects curve is assumed to have the shape of a
half sine wave lying in a plane through the axis of rotation of the shaft
and having a maximum defects amplitude, € | , at midspan. The
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E,1 = M0 x 1071p-in2

1 Ap = 4.268 x 108 |p -sec?/in?
X
C
Ky Ca b
£, -42.BI25in
Ill=§§.§2§in >
g,- 169.25 in
L - 338.5 in L
ALUMINUM SHAFT
y 1.D. - 4.26 in
X2 0.D. = 4.50 in
R, = desigrates tne location of intermediate
Support
Ky = Ky = 108 1p/in
) . imitates simple sy t
Ca = Cp = 0 Ib-sec/i :} characteristics ppor
|
Kbeam - Jij' = 1.06 lo/in
I
Coeam =-(-E-!‘t—AE-L/2 = 0.39087 Ib-sec/in
I 4 - .
6, = w -fi%3 = 4,26 cycles/sec
Figure Il. Dimensions and Input Values for the

Chinook Drive Shaft.
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results are given in nondimensional form; i.e., maximum runout
amplitudes are indicated in terms of a unit defects amplitude, fre-
quencies in terms of the fundamental frequency of the simply supported
shaft. In this case, the funduamental frequency is w, = 4. 26 cycles per

secoad.

It is hoped that this limited study will indicate trends in shaft

behavior, as the spring and damping coefficients, as well as the loca-
tinn of the intermediate support, are varied.

3. Discussion of Results of Parameter Study

Several comments may be made concerning trends in the
behavior of shafts on one intermediate support, as presented in
Figures 12 through 36.

1.

An increase in the spring stiffness of the intermediate
support will increase the values of the natural frequencies
in accordance with the relationships shown in Figures 37,
38, and 39.

Appreciable changes in the damping coefficients do not
induce significant shifts in critical frequencies.

An increase in the damping coefficients tends to decrease
maximum runouts, provided that the accompanying stiff-
ness value is low (<1060 pounds per inch).

Placement of the intermediate support near one of the end
supports also tends to decrease maximum runouts.

The cross marks shown in Figures 12 through 28 indicate the
occurrence of sudden high runout amplitudes, which corresponds with
the second and fourth critical frequencies of the shaft for the case in
which the support is at midspan and the third critical for the case in
which it is at quarter span. In the first case, these criticals are
excited by the defects distribution which is not completely symmetrical
about midspan due to round-off errors in the computations of the coor-
dinates for the forcing function. This minute asymmetry is of suffi-
cient magritude to cause large spikelike gains in amplitude at the
antisymmetrical critical frequencies, since there is absolutely no
damping available from the translational spring damper (located
exactly at £; = 0.5£) to suppress these gains. In the case of the
running shaft in which the intermediate support is located at quarter
span, one of the node points of the third critical mode coincides with
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Figure 13. Runout Versus Frequency Curve of a Rotating Shaft for
an intermediate Support at Midspan.
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Fiqure 14. Runout Versus Frequency Curve of a Rotating Shaft for an
Intermediate Support at Midspan.
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Figure 15. Runout Versus frequency Curve of a Rotating Shaft
for an Intermediate Support at Midspan.
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Figure 16. Runout Versus Freauency Curve of a Rotating Shaft for
an Intermediate Suppcrt at Midspan.
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Figuie 18. Runout Versus Frequency Curve of a Rotating Shaft for an
Intermediate Support at Midspan.
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Figure 20. Fregquency Curve of a Rotating Shaft for an Intermediate
Support at Midspan.
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Figure 21. Runout Versus Frequency Curve of a Rotating Shaft for
an Intermediat. Support at Quarter Span.
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Figure 22. Runout Versus Freaquency Curve of a Rotating Shaft for an
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the intermediate support point such that the damping is momentarily
lost. At the frequencies immediately adjacent to the third critical
frequency, these points do not coincide and damping is available to
adequately suppress excessive runouts. For the shaft with the inter-
mediate support at one-eighth span, these spurious runouts are not
seen for the first four critical frequencies, but will probably show up
with the sixth or seventh critical frequencies.

4. Natural Frequencies of a Flexibly Supported Shaft With
Concentrated End Masses [ Reference 5]

In this study, the effects of variation in both end spring stiff-
ness and end mass on the naturil frequencies of shafts on two flexible
supports with end masses are investigated; no intermediate support is
being considered. A schematic of this configuration is shown in the
upper left corner of Figure 40. The results in this figure are pre-
sented both in nondimensional units and units which specifically apply
to the Chinook drive shaft. If a stiffness of

E I
—IY; = 1.06 1b./in.

and a natural frequency unit of

E 1
—X _ =-2.7 rad/sec (0. 432 rev/sec)
pAL*

were used, the nondimensional units (left side and bottom scaies of
Figure 40) will convert to the dimensional units (right side and top
scales of Figure 40) for the Chinook shaft. The above unit conversion
factors are on an aluminum shaft with a 4. 5-inch-outside-diameter and
4, 26-inch-inside-diameter and are unsupported along a 338. 5-inch
span.

Figure 40 shows that the frequencies of a free-free shaft occur
for zero spring stiffness and no end mass and that the frequencies of a
pinned-pinned shaft are obtained in the limit a3 the spring stiffness
approaches infinity. {(These frequencies are indicated on the left- and
right-hand edges of the chart, respectively.)
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As an example, consider the curves for a shaft with end
masses each of which weighs the same as the shaft itself (i.e.,
# = 1.0). Physically, these end masses correspond to the gear-boxes
at each end of the power transmission shaft. The flexible end supports
are provided in the actual system by the fuselage of the helicopter.

If it were assumed that the shaft behaved as a pinned-pinned
beam at all rotational speeds in the range of interest (essentially the
range of the chart), it may be observed that end springs of stiffness
larger than 200, 000 pounds per inch would be required. This is a very
stiff spring indeed.

A more likely behavior is that indicated for a spring stiffness
parameter, kL*/EI = 10,000 (k = 10, 600 pounds per inch). Studyving
the natural frequencies of the shaft for this spring condition andp =1,
the first two critical frequencies are encountered at 4. 3 revolutions
per second (9.87 X 2,71 = 26. 8 radians per second and 17. 0 revolu-
tions per second (39.48 x 2. 71 = 107, 2 radians per second. These
frequencies are equal to the first and second pinnzd-pinned natural
frequencies, respectively. Consequently, at these speeds the 10, 600
pounds-per-inch spring stiffness is adequate to effectively pin the ends
of the shaft, The next two criticals correspond to antisymmetrical and
symmetrical modes and occur at speeds of 35.9 and 42.0 revolutions
per second, respectively. The mode occurring at 35.9 revolutions per
second represents a transition between the {irst free-free and the third
pinned-pinned modes; at 42. 0 revolutions per second, the mode repre-
sents a transition between the second free-free and the fourth pinned-
pinned modes. Note that these critical frequencies bracket that of the
third pinned-pinned natural frequency. All subsequent criticals may
be considered as ''free-free' since the natural frequency values are
the same as those which would occur if no end springs were presernt.
As jndicated in the chart, these criticals occur at frequencies of 69. 5,
107. 7 and 154. 3 revolutions per second. Although they correspond to
the fourth through sixth free-free criticals, the effect of the end mass
has been to reduce the critical frequencies to valies just slightly
larger than the second through sixth pinned-pinned natural frequencies.

Examining the significance of these findings, exceedingly stiff
supports are required to insure pinned-pinned behavior for the fre-
quency range of interest. Even in carefully designed experimental
rigs, spring stiffnesses in excess of about 100, 000 pounds per inch
cannot be achieved. Consequently, at the higher frequencies,
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pinned-pinned behavior of the shaft cannot exist either for the full-
scale power transmission shaft or for modelled experimental investi-
gations.

The results and discussion presented here is directly appli-
cable to a power transmission shaft attached to gearboxes supported
on translational springs. Although recults are rnict currently available,
there appears to be no reascn to believe that the same general conclu-
sions regarding the effect of the boundary conditions would not be
valid for other support configurations. For example, suppose that the
gearboxes were also mounted against rotation by use of rotational
springs; the translational and rotational springs would allow a transi-
tion from free-free to pinned-pinned to fixed-fixed boundaries, and
sgain the particular boundary condition most representative of the
behavior of the shaft would depend on both the spring coefficients and
the rotational speed. The pinned-pinned condition, for exainple, could
not be assumed for the entire frequency range. The analysis for this
situation requires a generalization of the computer program and should
be performed at some futui1 Jdate.

The above analysis could serve to explain some of the dis-
crepancies which exist between experimental and theoretical studies on
rotating shafts. The predicted and measured shaft performance could
be significantly different if the incorrect boundary conditions (end
impedances) were assumed. Note, however, that the measured
natural frequencies may not indicate an error. For the example dis-
cussed (kL?/EI = 10,000, , = 1,0), all of the natural frequencies have
values close to the expected pinned-pinned frequencies. The critical
sp2eds at 35.9 and 42, 0 revolutions per second corresponding to the
transition modes deviate a little more from the bracketed pinned-
pinned frequency. It is possible, however, that this difference would
be unnoticed ir an experimental run and that one of the two criticals
would pass undetected. If so, a logical but false conclusion would be
that the supports are pinned. It should be understood that the end
impedances for free=free shafts with heavy end masses are totally
different from those for pinned-pinned shafts. (The force effect of
mass on the shaft is 16C degrees out of phase with the force effect of
spring, since the former is associated with acceleration and the lattier
with displacement; the pinned-pinned condition represents the shaft
supported on infinitely stiff springs, not infinitely large masses.)
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5. Numerical Comparison Study [ Reference 4]}

In order to evaluate the significance of the added terms in the
governing differential equation, a numerical evaluation is performed
between critical speeds obtained by the plain beam equation and the
more complete equation of rotating shafts. The specific shaft con-
figuration considered was made of aluminum tubing, 4.5 inches in
diameter by 28 feet long and 0. 070 inch thick.

A simply supported shaft is selected in the determination of
errors between critical frequencies obtaired by the vibrating beam
equation and those by the more complete equation which includes the
gyroscopic, rotary inertia, and shear terras because the ideal bound-
ary conditions permit convenient closed form solutions, It is felt that
errors should be similar for the flexibly supported and the simply sup-
ported shaft.

Equation 7, the equation of motion for the deflection, y, of a
shaft, at position x, vibrating with frequency w, may also be written in
terms of stationary coordinate axes in the following manner.

4
9Y 4 o[l + )w- 2iw] . W 1- mw (w-2i0)]y=0 (27)
dx* dx?

The unit of distance is the length, {.
. . . 1 __1
The unit of time is Q: where QO-F El/pA.

The unit of mass is the mass of the beam, pA{.

If the parameter n = I/A{? vanishes (infinitely slender beam)
the simple beam equation results. For nonzesro, n, the motion
depends also on m = Ey/ K'E_ and w, the spin frequency of the beam

about its longitudinal axis.

The moment and shear along the beam are given by:

Q-J:-
¥l w

. + nul (m + Do- 2ie] X
Mix) = L+ rmaty, sp= So 10 & , (>8)
dx? 1 - n’mw(w- 2iw)
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The general solution of equation 27 is:
y(x) = A cosh Bx + B sinh fx + C cos yx + D sin yx

where

B=wes={wl( \ﬁ+%[(;- o +2ie] - F(m+ 1)u-zn°])}% (29
and

veoas{o( V1L~ Do+ ze)+3 (@ +De-2a 0% (0

and A, B, C, and D are constants to be determined by the boundary
conditions.

For the simply supported beam, sin y = 0, equation 30 at the
critical frequencies becomesg

— ) — Y
2 - 2

or
n?mo* +[1+ Tn%g(m - 1)]w?- ™n*=0 (31)

where n is an integer indicating critical mode number. In the evalua-
tion of equation 31 for the critical frequencies of the 4. 26-inch-inside-
diameter, 4.5-inch-outside-diameter, 0.070-inch wall by 28-foot-
long, aluminum rotor, the foliowing numerical values were used:

n=1.74%X10 %
m = 5.3 with K' = 2.

The critical frequencies for the rotor, using the equation for which
gyroscopics, rotary inertia, are shear and neglected, are simply
determined by

= nT
unﬂo

where for the aluminum shaft § = 2. 71 radians per second = .432 rps.
From these equations, it was defermined that for the ninth critical
which occurs in the vicinity of 20, 000 rpm, the discrepancy between

92



critical frequencies is 2. 8 percent; for the sixteenth critical, at about
60, 000 rpm, the discreparcy is 6. 7 percent.

It may be concluded that for the speed range considered, the

critical frequencies predicted by the simple vibrating beam equation
are reasonably accurate.
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MULTIRING SQUEEZE FILM DAMPERS

FREQUENCY DEFENDENT DAMPER [ References 1 and 3]

It has been established analytically and experimentally for
hypercritical shafts that there is an optimum value of damping for
each critical speed.

A damper which will meet these requirements is the multiple
concentric ring damper, a device which consists of a number of trans-
lating, but nonrotating, rings nestled one into the other (see Figure
41). Damping is derived from the hydrodynamic action of the pres-
surized oil films between the rings. It has been found experimentally
that these rings should be pinned against rotation to prevent hydro-
dynamic instabilities and consequent excitation of nonsynchronous
whirling of the rings.

The damping and spring coefficients, C and K, respectively,
are defined by C = F/pwand K = FR/ p, Where F,, and Fp are the

tangential and radial components of force which the journal experi -
ences due to p, the journal runout, and «, the circular frequency. A
collectior of parameters is required to specify a theoretical multiple-
ring (MR) assembly; i.e., length, radius, and clearance of each
film, the masses of the rings, the ambient pressure, fluid viscosity,
operating speed, and radius of journal runout orbit.

The multiple-ring assembly can he regarded as a synthesis of a
single-film device. Digital computer programs have been written
whicl: compute up to five films bearing properties over a fairly useful
range of the characterizing parameters. This includes 0.1<L/D<3.0
and film eccentricities which are not substantially greater than 0. 7 to
0.75. These programs are based on the analytic expressions which
describe the single-film assembly.
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In the design of dampers for a given range of C, a single-film
computation shows that the required clearance is usually too small for
the expected runouts. A multiple-ring assembly can be tried in order
to achieve a gain in allowable runout.

The values of C for the two films tend to combine roughly like
capacitances in series. This simplified picture is approximate but
does give, in the case of light rings, a useful way to make qualitative
statements about an MR assembly. At high operating speeds, the
inertia of heavier rings will restrict their motion and most of the
motion will take place in the innermost film. At low speeds, action of
all the films will be evident. Thus, at high speeds, the nigher C coef-
ficient will be roughly that corresponding to the innermost film, and at
low speeds C will correspond to that predicted by the single film of the
outer clearance. This, then, is a qualitative explanation of the varia-
tion of C with w in the MR assembly and the reason for its usefulness
in frequency responsive damping bearings for supercritical rotors.

The graphs and charts presented here should be regarded as
illustrative of the type of results which may be expected for the
multiring bearing assembly when applied to the Battelle shaft model.
Although there are limitations to the frequency-dependent character-
istics of the damping coefficient which can be achieved {some of which
are evident in the data presented), these results can be improved with
additional manipulation and refinement in the selection of the support
parameters.

The tasic specifications of this two-ring damper are as follows
(refer to Figure 41):

L = length = 0.95 inch

ry = radius ot the bearing = 2. 25 inches

) = inner radius of the outer ring = 1. 25 inches
r2 = radius of the journal = 1.0 inch

Co ° radial clearance of the outer film =16 MILS
C = radial ciearance of the middle film = 6 MILS
C: = radial clearance of the inner film =5 MILS
M, = mass of outer ring = 1335 grams
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M, = mass of inner ring = 215 grams

B = viscosity of fluid in outer film = .2 POISE
) = viscosity of fluid in middle film = .1 POISE
K2 = viscosity of fluid in inner film = .1 POISE
P = ambient pressure = 20 PSI

Tolerances on all the linear dimensions should be held to 5
percernt or better. The masses of the rings should be maintained to
within about 10 percent of the values specified; the above design is
based on the rings made of steel (SP. GR. = 7. 8).

The viscosities indicated correspond to Teresso 43, at 100°F
for the outer film and 150°F for the middle and inner films. Teresso
43 is, according to the charts, somewhat less viscous than SAE 10W
oil. The tempcratures chosen are those typically used in some simi-
lar calculations; any indication that the operating temperatures are
significantly different from these will be a signal for recalculation.

The choice of ambient pressure equal to 20 PSI was based on
pasi experience; this should certainly be enough to effect the fluid
exchange required to offset heat generation in the bearing. If the
fluid is saturated with gas at ordinary atmospheric pressure, then P,
refers to gauge pressure.

Figures 42 and 43 show damping coefficient versus runout of
the journal for constant values of shaft speed. From these figures it
may be obcerved that the damping coefficient remains relatively con-
stant with respect to runout at low runouts or low shaft speeds.

Figure 44 superposes a cross plot of the results from Figure
42 on the curve of desired damping characteristics. Curves of con-
stant runout of 4, 8, and 12 mils are presented. The vertical bars
indicate the complete range of damping coefficient experienced at the
critical speeds for the values of runout represented in Figure 42,

Table I is also included and gives values of the effective spring
coefficients, K, obtained for this two-ring damper assembly. Note
that all of these values are negative, and an equivalent mass at the
journal can be obtained by dividing the values of K by w?
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Figure 42. Damping Characteristic of a Two-Ring Damper,
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TABLE 1
EFFECTIVE SPRING COEFFICIENT, K, FOR TWO-RING DAMPER

w =8 rev/

W

w = 34 rev/sec.

w = 78 rev/sec.

sec.
RUNOUT |-Kx10~? RUNOUT -Kx107? RUNOUT -Kx 107
(mils) (ib. /in.)) (mils) (1b. /in.) {mils) (b. /in.)
2.15 . 1306 2. 16 2.339 2. 21 11.85
4. 33 . 1291 4,35 2.5 4.43 11.77
6. 58 . 1266 6. 60 2.213 6.70 11. 63
8.91 L1230 8.94 2.212 9.03 11.42
11.3 . 1184 11. 4 2.134 11. 4 11.12
14.0 L1129 14.0 2.038 14.0 10. 14
16.9 . 1066 16.9 1.928 16.7 2.643
w =138 rev/ sec. w =215 rev/ sec. w = 210 rev / sec.
RUNOUT | - Kx 1072 RUNOUT -Kx107? RUNOUT -Kx107?
(mils) (tb. /in. ) (mils) (1b. /in.) (mils) (1b. /in)
2.32 33.8 2.54 69. 86 2. 89 110.1
4.63 34.0 4.98 69. 14 5.30 79. 23
6.92 34.16 7.00 61. 26 6. 38 74. 36
9. 1% 12 6% 8. 30 58. 78 7.10 92.79
11.1 28.92 9.51 60. 25 7.95 122.9
13.0 22.71 11.2 56. 87 9.17 139.7
15.9 8.737 14.1 36. 00 11.5 111.7
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TABLE 1 (CONTINUED)

w = v/ sec J @ =15 ;ngic w = 145 rey L‘,gc____‘
RUNOUT |- Kx 10" | RUNOUT -Kx 1072 RUNOUT |-Kxl07?
(mils) (ib. /in ) (miis) (ib. /in.) (mils) (ib. /in. )
1.07 1.274 1.10 11,01 1.14 28. 36
2.16 1.269 2.20 10. 99 2.29 28. 40
3. 24 1. 264 3. 31 10.95 3. 44 28.43
4. 34 1.256 4.43 10.91 4.58 28. 47
5. 46 1.245 5. 55 10. 86 5.72 28. 50
6. 59 1,232 6. 69 10.78 6. 87 28. 49
7.74 1,217 7.85 10. 68 8.02 28. 38
8.93 1.199 9.02 10. 58 9.16 27.93
w = 175 rev / sec w = 225 rev / sec. w = 275 rev / sec.
RUNOUT | -Kx 1072 RUNOUT -Kx107? RUNOUT |- Kx 107
{mils) (1b. /in.) (mils) (ib. /in.) (mils) (1b. /irn.)
1.21 50. 29 1.29 73.98 1.38 97. 45
2. 41 50. 56 2,57 74.75 2.74 98.76
3. 61 50. 95 3.82 75. 32 4,08 91. 65
4.79 51,42 5.03 72.48 5. 24 80. 62
5.94 51.08 6.11 67. 48 £.05 73. 54
7.04 49. 52 6.95 63.52 6. 61 72.02
8. 04 47.20 7. 60 61.93 7.07 74. 81
8. 89 44.98 8.16 62. 36 7. 49 80. 85
w = 32b rev / sec.
RUNOUT |} -Kx 102
{(mils) (ib. /in.)
1. 49 119.7
2.97 114.0
4,37 92. 60
5. 31 77. 14
5. 89 71.62
6.29 74. 26
6. 62 83.53
6. 95 97.75
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Operation of this bearing depends upon the provision of a load
resisting spring connected between the journal and the tearing housing.
A schematic of this arrangement is indicated in Figure 41. This
spring should be arranged so as to offset the negative "'spring'' obtained
in the multiring computations.

LIGHTWEIGHT DAMPER [ Reference 4]

In the previous sectior. a conceptual design was presented for a
multiring damping assembly which could accommodate the Battelle
model of the Chinook drive shaft. Although this design provides the
necessary damping as a function of frequency, the ring masses
required are excessive. Similarly, dampers designed to match the
variable damping requirements (Figure 45) of the full-scale, 4.5-
inch-diameter, 28-foot-long aluminum Chinook helicopter shaft are
also relatively massive (4 to 5 pounds) compared to the lightweight
bearings desired.

Presented in this section is a multiring bearing configuration
in which the variable damping characteristics have been sacrificed for
the sake u1 lightweight design. One aspect which should still make the
multiring damper an attractive means for suppressing shaft criticals
is the fact that it will provide high damping coefficients with low-
viscosity damping fluids. The low-viscosity fluid recommended is the
Dow Corning, 20 centistoke, 200 fluid, which, in comparison to other
fluids, is less viscosity sensitive to temperature changes. The vari-
ation of viscosity with temperature for this fluid is shown in Figure 46.
The higher viscosity fluids needed for shear dampers (50, 000 to
100, 000 centistokes) are more temperature sensitive and yield iess
desirable damping coefficients at temperatures lower than operating
temperature.

The variable damping characteristics of the multiring damper
are obtained by a careful selection of masses and clearances of the
rings such that an increase in damping occurs with an increase in rota-
tional speed. The damping coefficient depends primarily on the

quantity M pw? (where M = mass of outer ring, p= journal runout, and
w = angular speed). Consequently, when p and » are relatively small,
as in the case of the Chinook shaft, large outer ring masses are
required to provide the desired damping profile shown in Figure 45.
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In view of these observations, it was decided to select a light-
weight, two-ring damper having a constant damping output with changes
in frequency and specifically designed to be optimum for the fifth criti-
cal frequency of the Chinook Shaft. In other words, the damper has
been designed to deliver a damping coefficient of about 6 pounds per

second per inch over the entire speed range operating at a temperature
of 160°F.

The design specifications recommended for the damper are as

follows:

length of the damper = 1.5 inches

radius of the housing = 2.25 inches

inner radius of the outer ring = 2.125 inches

outer radius of the bearing holder = 2,00 inches

radial clearances of all 3 films = 0.012 incn

mass of outer ring = 0.25 1b (A1), 0.151 1b (Mg), 0.65 1b
(Fe)

mass of inner ring = 0.24 1b (Al), 0.141 1b (Mg), 0.62 1b
(Fe)

ambient pressure = 15 psi (atmospheric)

viscosity of fluid = refer to Figure 46

Typicel results for the damping coefficients at various temper-
atures are presented in Table 2. Case I represents a bearing in
which the entire assembly is of the same material. Case @I is for an
assembly constructed of different materials arranged to utilize their
different coefficients of expansion in a manner which would partially
compensate for the viscosity change of the fluid. Consequently, a
smaller change in the damping coefficient with temperature is pro-
duced.

The value of the damping coefficient at 160°F is optimum for
the fifth critical speed as specified in Figure 45. At lower tempera-
tures the results of Table 2 indicate a damping coefficient which is too
large. This ie due *o the increased viscosity of the damping fluid.
For Case I at the first critical frequency and a temperature of - 30°F,
the damping coefficient is 30 times larger than the optimum value.
Although an overdamping of this magnitude could result in rough oper-
ation at the critical speeds, it is felt that the runouts and bearing
loads actually experienced could be tolerated.
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TABLE 2

DAMPING COEFFICIENTS IN THE LIGHTWEIGHT
TWO-RING DESIGN

TEMPERATURE DAMPING COEFFICIENT LB. SEC/IN.
°F CASE ! CASE 11
160 6.0- 7.0 6.0- 7.0
90 12,0 -13.0 10.0 - 11.0
27 23.0 - 24.0 16.0 - 17.9
-4 32.0 - 34.0 21.0 - 22.0
-30 45.0 - 47.0 34,0 - 35.0
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Case II illustrates the beneficial effects which can be obtained
by utilizing different materials in the bearing assembly. If the rings
and housing are constructed of materials of different coefficients of
expansion, they can be arranged to bring abcut an increase of the ring
clearances with decreasing temperature. This in turn leads to a
lowering of the effective damping coefficient of the damper. With this
behavior in mind a number of configurations were investigated using
common materials with widely separated coefficients of <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>